Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells.

نویسندگان

  • A Bringmann
  • S Schopf
  • A Reichenbach
چکیده

Whole cell voltage-clamp recordings of freshly isolated cells were used to study changes in the currents through voltage-gated Ca(2+) channels during the postnatal development of immature radial glial cells into Müller cells of the rabbit retina. Using Ba(2+) or Ca(2+) ions as charge carriers, currents through transient low-voltage-activated (LVA) Ca(2+) channels were recorded in cells from early postnatal stages, with an activation threshold at -60 mV and a peak current at -25 mV. To increase the amplitude of currents through Ca(2+) channels, Na(+) ions were used as the main charge carriers, and currents were recorded in divalent cation-free bath solutions. Currents through transient LVA Ca(2+) channels were found in all radial glial cells from retinae between postnatal days 2 and 37. The currents activated at potentials positive to -80 mV and displayed a maximum at -40 mV. The amplitude of LVA currents increased during the first postnatal week; after postnatal day 6, the amplitude remained virtually constant. The density of LVA currents was highest at early postnatal days (days 2-5: 13 pA/pF) and decreased to a stable, moderate level within the first three postnatal weeks (3 pA/pF). A significant expression of currents through sustained, high-voltage-activated Ca(2+) channels was found after the third postnatal week in approximately 25% of the investigated cells. The early and sole expression of transient currents at high-density may suggest that LVA Ca(2+) channels are involved in early developmental processes of rabbit Müller cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age- and disease-related changes of calcium channel-mediated currents in human Müller glial cells.

PURPOSE To determine whether the expression of voltage-gated Ca2+ channels in human Müller glial cells changes during normal aging and in cells from patients with proliferative vitreoretinopathy (PVR). METHODS Müller cells were enzymatically isolated from retinas of healthy donors and from excised retinal pieces of patients with PVR, and the whole-cell, voltage-clamp technique was used to cha...

متن کامل

Proliferation of retinal glial (Müller) cells: Role of P2 receptors and potassium channels*

Müller glial cells of the vertebrate retina express purinergic P2 receptors; activation of these receptors causes an increase of the intracellular free calcium concentration and a subsequent activation of calcium-dependent potassium channels in the plasma membranes. The expression of these receptors varies among the animal species. Müller cells of all species investigated so far express metabot...

متن کامل

Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.

To understand the role of different K(+) channel subtypes in glial cell-mediated spatial buffering of extracellular K(+), immunohistochemical localization of inwardly rectifying K(+) channel subunits (Kir2.1, Kir2.2, Kir2.3, Kir4.1, and Kir5.1) was performed in the retina of the mouse. Stainings were found for the weakly inward-rectifying K(+) channel subunit Kir4.1 and for the strongly inward-...

متن کامل

Upregulation of extracellular ATP-induced Müller cell responses in a dispase model of proliferative vitreoretinopathy.

PURPOSE To test whether in an animal model of proliferative vitreoretinopathy (PVR) the Müller glial cells displayed an upregulation of purinergic P2 receptor-mediated responses. METHODS PVR was induced by intravitreal injection of the proteolytic enzyme, dispase, in the eyes of adult rabbits. The developing PVR was examined ophthalmoscopically. After 3 weeks, small retinal pieces were wholem...

متن کامل

Glial modulation of synaptic transmission in the retina.

Glial modulation of synaptic transmission and neuronal excitability in the mammalian retina is mediated by several mechanisms. Stimulation of glial cells evokes Ca(2+) waves, which propagate through the network of retinal astrocytes and Müller cells and result in the modulation of the activity of neighboring ganglion cells. Light-evoked spiking is enhanced in some ganglion cells and depressed i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 84 6  شماره 

صفحات  -

تاریخ انتشار 2000